3.519 \(\int \frac{\sqrt{a^2+2 a b x^n+b^2 x^{2 n}}}{x} \, dx\)

Optimal. Leaf size=85 \[ \frac{b^2 x^n \sqrt{a^2+2 a b x^n+b^2 x^{2 n}}}{n \left (a b+b^2 x^n\right )}+\frac{a \log (x) \sqrt{a^2+2 a b x^n+b^2 x^{2 n}}}{a+b x^n} \]

[Out]

(b^2*x^n*Sqrt[a^2 + 2*a*b*x^n + b^2*x^(2*n)])/(n*(a*b + b^2*x^n)) + (a*Sqrt[a^2 + 2*a*b*x^n + b^2*x^(2*n)]*Log
[x])/(a + b*x^n)

________________________________________________________________________________________

Rubi [A]  time = 0.0261973, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.071, Rules used = {1355, 14} \[ \frac{b^2 x^n \sqrt{a^2+2 a b x^n+b^2 x^{2 n}}}{n \left (a b+b^2 x^n\right )}+\frac{a \log (x) \sqrt{a^2+2 a b x^n+b^2 x^{2 n}}}{a+b x^n} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a^2 + 2*a*b*x^n + b^2*x^(2*n)]/x,x]

[Out]

(b^2*x^n*Sqrt[a^2 + 2*a*b*x^n + b^2*x^(2*n)])/(n*(a*b + b^2*x^n)) + (a*Sqrt[a^2 + 2*a*b*x^n + b^2*x^(2*n)]*Log
[x])/(a + b*x^n)

Rule 1355

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Dist[(a + b*x^n + c*x^
(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin{align*} \int \frac{\sqrt{a^2+2 a b x^n+b^2 x^{2 n}}}{x} \, dx &=\frac{\sqrt{a^2+2 a b x^n+b^2 x^{2 n}} \int \frac{a b+b^2 x^n}{x} \, dx}{a b+b^2 x^n}\\ &=\frac{\sqrt{a^2+2 a b x^n+b^2 x^{2 n}} \int \left (\frac{a b}{x}+b^2 x^{-1+n}\right ) \, dx}{a b+b^2 x^n}\\ &=\frac{b^2 x^n \sqrt{a^2+2 a b x^n+b^2 x^{2 n}}}{n \left (a b+b^2 x^n\right )}+\frac{a \sqrt{a^2+2 a b x^n+b^2 x^{2 n}} \log (x)}{a+b x^n}\\ \end{align*}

Mathematica [A]  time = 0.015956, size = 37, normalized size = 0.44 \[ \frac{\sqrt{\left (a+b x^n\right )^2} \left (a n \log (x)+b x^n\right )}{n \left (a+b x^n\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a^2 + 2*a*b*x^n + b^2*x^(2*n)]/x,x]

[Out]

(Sqrt[(a + b*x^n)^2]*(b*x^n + a*n*Log[x]))/(n*(a + b*x^n))

________________________________________________________________________________________

Maple [A]  time = 0.019, size = 54, normalized size = 0.6 \begin{align*}{\frac{a\ln \left ( x \right ) }{a+b{x}^{n}}\sqrt{ \left ( a+b{x}^{n} \right ) ^{2}}}+{\frac{b{x}^{n}}{ \left ( a+b{x}^{n} \right ) n}\sqrt{ \left ( a+b{x}^{n} \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2+2*a*b*x^n+b^2*x^(2*n))^(1/2)/x,x)

[Out]

((a+b*x^n)^2)^(1/2)/(a+b*x^n)*a*ln(x)+((a+b*x^n)^2)^(1/2)/(a+b*x^n)*b/n*x^n

________________________________________________________________________________________

Maxima [A]  time = 1.00288, size = 18, normalized size = 0.21 \begin{align*} a \log \left (x\right ) + \frac{b x^{n}}{n} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2+2*a*b*x^n+b^2*x^(2*n))^(1/2)/x,x, algorithm="maxima")

[Out]

a*log(x) + b*x^n/n

________________________________________________________________________________________

Fricas [A]  time = 1.62657, size = 32, normalized size = 0.38 \begin{align*} \frac{a n \log \left (x\right ) + b x^{n}}{n} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2+2*a*b*x^n+b^2*x^(2*n))^(1/2)/x,x, algorithm="fricas")

[Out]

(a*n*log(x) + b*x^n)/n

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\left (a + b x^{n}\right )^{2}}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2+2*a*b*x**n+b**2*x**(2*n))**(1/2)/x,x)

[Out]

Integral(sqrt((a + b*x**n)**2)/x, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b^{2} x^{2 \, n} + 2 \, a b x^{n} + a^{2}}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2+2*a*b*x^n+b^2*x^(2*n))^(1/2)/x,x, algorithm="giac")

[Out]

integrate(sqrt(b^2*x^(2*n) + 2*a*b*x^n + a^2)/x, x)